Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Semin Nucl Med ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38519308

RESUMEN

PET probes targeting fibroblasts are frequently used for varying applications in oncology. In recent years, the clinical spectrum has been expanded towards cardiovascular medicine, e.g., after myocardial infarction, in aortic stenosis or as a non-invasive read-out of atherosclerosis. We herein provide a brief overview of the current status of this PET radiotracer in the context of cardiovascular disease, including translational and clinical evidence. In addition, we will also briefly discuss future applications, e.g., the use of fibroblast-targeting PET to investigate bilateral organ function along the cardiorenal axis.

2.
Res Pract Thromb Haemost ; 8(1): 102261, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38192728

RESUMEN

Background: Chronic inflammation is a cardiovascular risk factor, and interleukin-1ß (IL-1ß) is central to the inflammatory host response. Platelets contain the NLRP3 inflammasome and are able to translate IL-1ß messenger RNA (mRNA) and secrete mature IL-1ß upon activation. However, the role of a chronic inflammatory environment in platelet IL-1ß mRNA and protein content remains unclear. Objectives: The aim of the current study was to investigate intracellular platelet IL-1ß and IL-1ß mRNA in a chronic inflammatory state. Methods: Sixty-five patients with stable inflammation (ie, high-sensitivity C-reactive protein within predefined margins in 2 separate measurements) were stratified according to high-sensitivity C-reactive protein levels in low (0.0-0.9 mg/L), medium (1.0-2.9 mg/L), and high (3.0-9.9 mg/L) risk groups. Platelet reactivity as well as platelet IL-1ß protein synthesis were studied. Results: The highest risk group was characterized by a distinct cardiovascular risk profile and approximately 20% higher platelet counts. While platelet reactivity was not different, a reduction in intracellular platelet IL-1ß mRNA and IL-1ß protein levels was observed in the highest risk group and was linked to decreased platelet size and granularity. This signature suggests a phenotype of chronic IL-1ß secretion and could be experimentally phenocopied by stimulation of platelets from healthy volunteers with either TRAP-6 or collagen related peptide (CRP-XL). Conclusion: Our data suggest a phenotype of chronic IL-1ß secretion by platelets in patients with chronic sterile inflammation.

3.
Sci Adv ; 9(47): eadj4846, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38000021

RESUMEN

Patients with advanced chronic kidney disease (CKD) mostly die from sudden cardiac death and recurrent heart failure. The mechanisms of cardiac remodeling are largely unclear. To dissect molecular and cellular mechanisms of cardiac remodeling in CKD in an unbiased fashion, we performed left ventricular single-nuclear RNA sequencing in two mouse models of CKD. Our data showed a hypertrophic response trajectory of cardiomyocytes with stress signaling and metabolic changes driven by soluble uremia-related factors. We mapped fibroblast to myofibroblast differentiation in this process and identified notable changes in the cardiac vasculature, suggesting inflammation and dysfunction. An integrated analysis of cardiac cellular responses to uremic toxins pointed toward endothelin-1 and methylglyoxal being involved in capillary dysfunction and TNFα driving cardiomyocyte hypertrophy in CKD, which was validated in vitro and in vivo. TNFα inhibition in vivo ameliorated the cardiac phenotype in CKD. Thus, interventional approaches directed against uremic toxins, such as TNFα, hold promise to ameliorate cardiac remodeling in CKD.


Asunto(s)
Insuficiencia Cardíaca , Insuficiencia Renal Crónica , Ratones , Animales , Humanos , Factor de Necrosis Tumoral alfa/genética , Tóxinas Urémicas , Remodelación Ventricular , Insuficiencia Cardíaca/etiología
4.
Clin Kidney J ; 16(11): 1845-1860, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37915921

RESUMEN

Chronic kidney disease (CKD) represents an independent risk factor for cardiovascular diseases (CVD). Accordingly, CKD patients show a substantial increased risk of cardiovascular mortality. Inflammation represents an important link between CKD and CVD. The interaction between endothelial cells and effector cells of the innate immune system plays a central role in the development and progression of inflammation. Vascular injury causes endothelial dysfunction, leading to augmented oxidative stress, increased expression of leukocyte adhesion molecules and chronic inflammation. CKD induces numerous metabolic changes, creating a uremic milieu resulting in the accumulation of various uremic toxins. These toxins lead to vascular injury, endothelial dysfunction and activation of the innate immune system. Recent studies describe CKD-dependent changes in monocytes that promote endothelial dysfunction and thus CKD progression and CKD-associated CVD. The NLR family pyrin domain containing 3-interleukin-1ß-interleukin-6 (NLRP3-IL-1ß-IL-6) signaling pathway plays a pivotal role in the development and progression of CVD and CKD alike. Several clinical trials are investigating targeted inhibition of this pathway indicating that anti-inflammatory therapeutic strategies may emerge as novel approaches in patients at high cardiovascular risk and nonresolving inflammation. CKD patients in particular would benefit from targeted anti-inflammatory therapy, since conventional therapeutic regimens have limited efficacy in this population.

5.
Front Immunol ; 14: 1252384, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37701434

RESUMEN

Introduction: The interleukin-1 (IL-1) family and the NLR family pyrin domain-containing 3 (NLRP3) inflammasome contribute to atherogenesis but the underlying mechanisms are incompletely understood. Unlike IL-1ß, IL-1α is not dependent on the NLRP3 inflammasome to exert its pro-inflammatory effects. Here, a non-genetic model was applied to characterize the role of IL-1α, IL-1ß, and NLRP3 for the pathogenesis of atherosclerosis. Methods: Atherogenesis was induced by gain-of-function PCSK9-AAV8 mutant viruses and feeding of a high-fat western diet (WTD) for 12 weeks in C57Bl6/J wildtype mice (WT) and in Il1a-/-, Nlrp3-/-, and Il1b-/- mice. Results: PCSK9-Il1a-/- mice showed reduced atherosclerotic plaque area in the aortic root with lower lipid accumulation, while no difference was observed between PCSK9-WT, PCSK9-Nlrp3-/- and PCSK9-Il1b-/- mice. Serum proteomic analysis showed a reduction of pro-inflammatory cytokines (e.g., IL-1ß, IL-6) in PCSK9-Il1a-/- as well as in PCSK9-Nlrp3-/- and PCSK9-Il1b-/- mice. Bone marrow dendritic cells (BMDC) of PCSK9-WT, PCSK9-Nlrp3-/-, and PCSK9-Il1b-/- mice and primary human monocytes showed translocation of IL-1α to the plasma membrane (csIL-1α) upon stimulation with LPS. The translocation of IL-1α to the cell surface was regulated by myristoylation and increased in mice with hypercholesterolemia. CsIL-1α and IL1R1 protein-protein interaction on endothelial cells induced VCAM1 expression and monocyte adhesion, which was abrogated by the administration of neutralizing antibodies against IL-1α and IL1R1. Conclusion: The results highlight the importance of IL-1α on the cell surface of circulating leucocytes for the development of atherosclerosis. PCSK9-Il1a-/- mice, but not PCSK9-Nlrp3-/- or PCSK9-Il1b-/- mice, are protected from atherosclerosis after induction of hypercholesterolemia independent of circulating cytokines. Myristoylation and translocation of IL-1α to the cell surface in myeloid cells facilitates leukocyte adhesion and contributes to the development of atherosclerosis.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Animales , Humanos , Ratones , Aterosclerosis/genética , Células Endoteliales , Inflamasomas , Interleucina-1alfa , Leucocitos , Proteína con Dominio Pirina 3 de la Familia NLR , Proteómica
6.
Lancet Child Adolesc Health ; 7(6): 405-414, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37119829

RESUMEN

BACKGROUND: Childhood-onset chronic kidney disease is a progressive condition that can have a major effect on life expectancy and quality. We evaluated the usefulness of the kidney tubular cell stress marker urinary Dickkopf-related protein 3 (DKK3) in determining the short-term risk of chronic kidney disease progression in children and identifying those who will benefit from specific nephroprotective interventions. METHODS: In this observational cohort study, we assessed the association between urinary DKK3 and the combined kidney endpoint (ie, the composite of 50% reduction of the estimated glomerular filtration rate [eGFR] or progression to end-stage kidney disease) or the risk of kidney replacement therapy (ie, dialysis or transplantation), and the interaction of the combined kidney endpoint with intensified blood pressure reduction in the randomised controlled ESCAPE trial. Moreover, urinary DKK3 and eGFR were quantified in children aged 3-18 years with chronic kidney disease and urine samples available enrolled in the prospective multicentre ESCAPE (NCT00221845; derivation cohort) and 4C (NCT01046448; validation cohort) studies at baseline and at 6-monthly follow-up visits. Analyses were adjusted for age, sex, hypertension, systolic blood pressure SD score (SDS), BMI SDS, albuminuria, and eGFR. FINDINGS: 659 children were included in the analysis (231 from ESCAPE and 428 from 4C), with 1173 half-year blocks in ESCAPE and 2762 in 4C. In both cohorts, urinary DKK3 above the median (ie, >1689 pg/mg creatinine) was associated with significantly greater 6-month eGFR decline than with urinary DKK3 at or below the median (-5·6% [95% CI -8·6 to -2·7] vs 1·0% [-1·9 to 3·9], p<0·0001, in ESCAPE; -6·2% [-7·3 to -5·0] vs -1·5% [-2·9 to -0·1], p<0·0001, in 4C), independently of diagnosis, eGFR, and albuminuria. In ESCAPE, the beneficial effect of intensified blood pressure control was limited to children with urinary DKK3 higher than 1689 pg/mg creatinine, in terms of the combined kidney endpoint (HR 0·27 [95% CI 0·14 to 0·55], p=0·0003, number needed to treat 4·0 [95% CI 3·7 to 4·4] vs 250·0 [66·9 to ∞]) and the need for kidney replacement therapy (HR 0·33 [0·13 to 0·85], p=0·021, number needed to treat 6·7 [6·1 to 7·2] vs 31·0 [27·4 to 35·9]). In 4C, inhibition of the renin-angiotensin-aldosterone system resulted in significantly lower urinary DKK3 concentrations (least-squares mean 12 235 pg/mg creatinine [95% CI 10 036 to 14 433] in patients not on angiotensin-converting enzyme inhibitors or angiotensin 2 receptor blockers vs 6861 pg/mg creatinine [5616 to 8106] in those taking angiotensin-converting enzyme inhibitors or angiotensin 2 receptor blockers, p<0·0001). INTERPRETATION: Urinary DKK3 indicates short-term risk of declining kidney function in children with chronic kidney disease and might allow a personalised medicine approach by identifying those who benefit from pharmacological nephroprotection, such as intensified blood pressure lowering. FUNDING: None.


Asunto(s)
Albuminuria , Insuficiencia Renal Crónica , Humanos , Niño , Albuminuria/tratamiento farmacológico , Estudios Prospectivos , Creatinina , Insuficiencia Renal Crónica/tratamiento farmacológico , Estudios de Cohortes , Riñón , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Biomarcadores , Angiotensinas , Proteínas Adaptadoras Transductoras de Señales
8.
Int J Mol Sci ; 24(3)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36768138

RESUMEN

Inflammation is intimately involved in the pathogenesis of diabetic kidney disease. Inhibition of SGLT-2 by a specific class of drugs, gliflozins, has been shown to reduce inflammation and attenuate the progression of diabetic nephropathy, in addition to its main effect of inhibiting renal glucose reabsorption. We used highly purified human renal proximal tubular epithelial cells (PTCs) as an in vitro model to study the cellular response to a diabetic (high glucose) and inflammatory (cytokines) microenvironment and the effect of gliflozins. In this context, we investigated the influence of SGLT-2 inhibition by empa- and dapagliflozin (500 nM) on the expression of pro-inflammatory factors (IL-1ß, IL-6, TNF-α, MCP-1, and ICAM-1). The results clearly indicate an anti-inflammatory effect of both gliflozins. Although induced expression of the four cytokines was only slightly attenuated, there was a clear effect on the expression of the adhesion molecule ICAM-1, a master regulator of cellular responses in inflammation and injury resolution. The induced expression of ICAM-1 mRNA was significantly reduced by approximately 13.5% by empagliflozin and also showed an inhibitory trend with dapagliflozin. However, induced ICAM-1 protein expression was significantly inhibited from 24.71 ± 1.0 ng/mL to 18.81 ± 3.9 (empagliflozin) and 19.62 ± 2.1 ng/mL (dapagliflozin). In conclusion, an additional anti-inflammatory effect of empa- and dapagliflozin in therapeutically observed concentrations was demonstrated in primary human PTCs in vitro.


Asunto(s)
Diabetes Mellitus , Nefropatías Diabéticas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Humanos , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Nefropatías Diabéticas/metabolismo , Glucosa/metabolismo , Células Epiteliales/metabolismo , Inflamación/metabolismo , Citocinas/metabolismo , Antiinflamatorios/uso terapéutico , Diabetes Mellitus/metabolismo
9.
Nat Genet ; 54(11): 1690-1701, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36303074

RESUMEN

Adult kidney organoids have been described as strictly tubular epithelia and termed tubuloids. While the cellular origin of tubuloids has remained elusive, here we report that they originate from a distinct CD24+ epithelial subpopulation. Long-term-cultured CD24+ cell-derived tubuloids represent a functional human kidney tubule. We show that kidney tubuloids can be used to model the most common inherited kidney disease, namely autosomal dominant polycystic kidney disease (ADPKD), reconstituting the phenotypic hallmark of this disease with cyst formation. Single-cell RNA sequencing of CRISPR-Cas9 gene-edited PKD1- and PKD2-knockout tubuloids and human ADPKD and control tissue shows similarities in upregulation of disease-driving genes. Furthermore, in a proof of concept, we demonstrate that tolvaptan, the only approved drug for ADPKD, has a significant effect on cyst size in tubuloids but no effect on a pluripotent stem cell-derived model. Thus, tubuloids are derived from a tubular epithelial subpopulation and represent an advanced system for ADPKD disease modeling.


Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , Adulto , Humanos , Riñón Poliquístico Autosómico Dominante/genética , Canales Catiónicos TRPP/genética , Organoides , Riñón , Antígeno CD24/genética
10.
Nat Rev Nephrol ; 18(12): 762-778, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36064794

RESUMEN

Mortality among patients with chronic kidney disease (CKD) is largely a consequence of cardiovascular disease (CVD) and is a particular concern given the increasing prevalence of CKD. Sterile inflammation triggered by activation of the innate immune system is an important driver of both CKD and associated CVD. Several endogenous mediators, including lipoproteins, crystals such as silica, urate and cholesterol crystals, or compounds released from dying cells interact with pattern recognition receptors expressed on a variety of different cell types, leading to the release of pro-inflammatory cytokines. Disturbed regulation of the haematopoietic system by damage-associated molecular patterns, or as a consequence of clonal haematopoiesis or trained innate immunity, also contributes to the development of inflammation. In observational and genetic association studies, inflammation is linked to the progression of CKD and cardiovascular events. In 2017, the CANTOS trial of canakinumab provided evidence that inhibiting inflammation driven by NLRP3-IL-1-IL-6-mediated signalling significantly reduced cardiovascular event rates in individuals with and without CKD. Other approaches to target innate immune pathways are now under investigation for their ability to reduce cardiovascular events and slow disease progression among patients with atherosclerosis and stage 3 and 4 CKD. This Review summarizes current understanding of the role of inflammation in the pathogenesis of CKD and its associated CVD, and how this knowledge may translate into novel therapeutics.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Insuficiencia Renal Crónica , Humanos , Enfermedades Cardiovasculares/etiología , Inflamación , Insuficiencia Renal Crónica/complicaciones , Inmunidad Innata
11.
Redox Biol ; 56: 102459, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36099852

RESUMEN

AIMS: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular events and exhibit myocardial changes including left ventricular (LV) hypertrophy and fibrosis, overall referred to as 'uremic cardiomyopathy'. Although different CKD animal models have been studied for cardiac effects, lack of consistent reporting on cardiac function and pathology complicates clear comparison of these models. Therefore, this study aimed at a systematic and comprehensive comparison of cardiac function and cardiac pathophysiological characteristics in eight different CKD models and mouse strains, with a main focus on adenine-induced CKD. METHODS AND RESULTS: CKD of different severity and duration was induced by subtotal nephrectomy or adenine-rich diet in various strains (C57BL/6J, C57BL/6 N, hyperlipidemic C57BL/6J ApoE-/-, 129/Sv), followed by the analysis of kidney function and morphology, blood pressure, cardiac function, cardiac hypertrophy, fibrosis, myocardial calcification and inflammation using functional, histological and molecular techniques, including cardiac gene expression profiling supplemented by oxidative stress analysis. Intriguingly, despite uremia of variable degree, neither cardiac dysfunction, hypertrophy nor interstitial fibrosis were observed. However, already moderate CKD altered cardiac oxidative stress responses and enhanced oxidative stress markers in each mouse strain, with cardiac RNA sequencing revealing activation of oxidative stress signaling as well as anti-inflammatory feedback responses. CONCLUSION: This study considerably expands the knowledge on strain- and protocol-specific differences in the field of cardiorenal research and reveals that several weeks of at least moderate experimental CKD increase oxidative stress responses in the heart in a broad spectrum of mouse models. However, this was insufficient to induce relevant systolic or diastolic dysfunction, suggesting that additional "hits" are required to induce uremic cardiomyopathy. TRANSLATIONAL PERSPECTIVE: Patients with chronic kidney disease (CKD) have an increased risk of cardiovascular adverse events and exhibit myocardial changes, overall referred to as 'uremic cardiomyopathy'. We revealed that CKD increases cardiac oxidative stress responses in the heart. Nonetheless, several weeks of at least moderate experimental CKD do not necessarily trigger cardiac dysfunction and remodeling, suggesting that additional "hits" are required to induce uremic cardiomyopathy in the clinical setting. Whether the altered cardiac oxidative stress balance in CKD may increase the risk and extent of cardiovascular damage upon additional cardiovascular risk factors and/or events will be addressed in future studies.


Asunto(s)
Cardiomiopatías , Insuficiencia Renal Crónica , Adenina , Animales , Antiinflamatorios , Apolipoproteínas E , Modelos Animales de Enfermedad , Fibrosis , Hipertrofia Ventricular Izquierda , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/metabolismo
12.
Kidney Int ; 102(3): 469-471, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35988933

RESUMEN

Activation of the Wnt/ß-catenin pathway represents a hallmark in the development of kidney fibrosis. Herein, Chen et al. report that Klotho-derived peptide 6, a peptide mimicking the function of the protein Klotho, directly binds to endogenous Wnt ligands and, thereby, serves as a small-molecule inhibitor of canonical Wnt/ß-catenin signaling. In diabetic kidney disease, Klotho-derived peptide 6 reduces glomerular injury and preserves kidney function, highlighting Klotho-derived peptide 6 as a novel therapeutic agent.


Asunto(s)
Nefropatías Diabéticas , Proteínas Klotho , Vía de Señalización Wnt , beta Catenina , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Glucuronidasa/metabolismo , Humanos , Riñón/metabolismo , Proteínas Klotho/genética , Proteínas Klotho/metabolismo , Vía de Señalización Wnt/genética , Vía de Señalización Wnt/fisiología , beta Catenina/genética , beta Catenina/metabolismo
13.
Basic Res Cardiol ; 117(1): 36, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35834066

RESUMEN

Atrial fibrillation (AF) is highly prevalent in hypertensive patients with metabolic syndrome and is related to inflammation and activation of the sympathoadrenergic system. The multi-ligand Receptor-for-Advanced-Glycation-End-products (RAGE) activates inflammation-associated tissue remodeling and is regulated by the sympathetic nervous system. Its counterpart, soluble RAGE (sRAGE), serves as anti-inflammatory decoy receptor with protective properties. We investigated the effect of sympathetic modulation by renal denervation (RDN) on atrial remodeling, RAGE/sRAGE and RAGE ligands in metabolic syndrome. RDN was performed in spontaneously hypertensive obese rats (SHRob) with metabolic syndrome compared with lean spontaneously hypertensive rats (SHR) and with normotensive non-obese control rats. Blood pressure and heart rate were measured by telemetry. The animals were killed 12 weeks after RDN. Left atrial (LA) and right atrial (RA) remodeling was assessed by histological analysis and collagen types. Sympathetic innervation was measured by tyrosine hydroxylase staining of atrial nerve fibers, RAGE/sRAGE, RAGE ligands, cytokine expressions and inflammatory infiltrates were analyzed by Western blot and immunofluorescence staining. LA sympathetic nerve fiber density was higher in SHRob (+44%) versus controls and reduced after RDN (-64% versus SHRob). RAGE was increased (+718%) and sRAGE decreased (- 62%) in SHRob as compared with controls. RDN reduced RAGE expression (- 61% versus SHRob), significantly increased sRAGE levels (+162%) and induced a significant decrease in RAGE ligand levels in SHRob (- 57% CML and - 51% HMGB1) with reduced pro-inflammatory NFkB activation (- 96%), IL-6 production (- 55%) and reduced inflammatory infiltrates. This led to a reduction in atrial fibrosis (- 33%), collagen type I content (- 72%), accompanied by reduced LA myocyte hypertrophy (- 21%). Transfection experiments on H9C2 cardiomyoblasts demonstrated that RAGE is directly involved in fibrosis formation by influencing cellular production of collagen type I. In conclusion, suppression of renal sympathetic nerve activity by RDN prevents atrial remodeling in metabolic syndrome by reducing atrial sympathetic innervation and by modulating RAGE/sRAGE balance and reducing pro-inflammatory and pro-fibrotic RAGE ligands, which provides a potential therapeutic mechanism to reduce the development of AF.


Asunto(s)
Remodelación Atrial , Desnervación , Hipertensión , Riñón , Síndrome Metabólico , Receptor para Productos Finales de Glicación Avanzada , Animales , Fibrilación Atrial/metabolismo , Colágeno Tipo I , Desnervación/métodos , Fibrosis , Hipertensión/complicaciones , Hipertensión/metabolismo , Inflamación/metabolismo , Riñón/inervación , Riñón/cirugía , Ligandos , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo , Síndrome Metabólico/terapia , Obesidad/metabolismo , Ratas , Ratas Endogámicas SHR , Receptor para Productos Finales de Glicación Avanzada/metabolismo
14.
Diabetes ; 71(8): 1706-1720, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35622000

RESUMEN

Hypoxia-induced islet cell death, caused by an insufficient revascularization of the grafts, is a major obstacle for successful pancreatic islet transplantation. Recently, it has been reported that the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome is expressed in pancreatic islets and that its loss protects against hypoxia-induced cell death. Therefore, we hypothesized that the inhibition of NLRP3 in islets improves the survival and endocrine function of the grafts. The transplantation of Nlrp3-/- islets or wild-type (WT) islets exposed to the NLRP3 inhibitor CY-09 into mouse dorsal skinfold chambers resulted in an improved revascularization compared with controls. An increased insulin release after NLRP3 inhibition caused the enhanced angiogenic response. Moreover, the inhibition of NLRP3 in hypoxic ß-cells triggered insulin gene expression by inducing the shuttling of MafA and pancreatic and duodenal homeobox-1 into the nucleus. This was mediated by a reduced interaction of NLRP3 with the thioredoxin-interacting protein (TXNIP). Transplantation of Nlrp3-/- islets or WT islets exposed to CY-09 under the kidney capsule of diabetic mice markedly improved the restoration of normoglycemia. These findings indicate that the inhibition of NLRP3 in isolated islets represents a promising therapeutic strategy to improve engraftment and function of the islets.


Asunto(s)
Diabetes Mellitus Experimental , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Diabetes Mellitus Experimental/metabolismo , Hipoxia/metabolismo , Insulina/metabolismo , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
16.
Circ Res ; 130(6): 814-828, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35130718

RESUMEN

BACKGROUND: In patients with chronic kidney disease (CKD), atrial fibrillation (AF) is highly prevalent and represents a major risk factor for stroke and death. CKD is associated with atrial proarrhythmic remodeling and activation of the sympathetic nervous system. Whether reduction of the sympathetic nerve activity by renal denervation (RDN) inhibits AF vulnerability in CKD is unknown. METHODS: Left atrial (LA) fibrosis was analyzed in samples from patients with AF and concomitant CKD (estimated glomerular filtration rate [eGFR], <60 mL/min per 1.73 m2) using picrosirius red and compared with AF patients without CKD and patients with sinus rhythm with and without CKD. In a translational approach, male Sprague Dawley rats were fed with 0.25% adenine (AD)-containing chow for 16 weeks to induce CKD. At week 5, AD-fed rats underwent RDN or sham operation (AD). Rats on normal chow served as control. After 16 weeks, cardiac function and AF susceptibility were assessed by echocardiography, radiotelemetry, electrophysiological mapping, and burst stimulation, respectively. LA tissue was histologically analyzed for sympathetic innervation using tyrosine hydroxylase staining, and LA fibrosis was determined using picrosirius red. RESULTS: Sirius red staining demonstrated significantly increased LA fibrosis in patients with AF+CKD compared with AF without CKD or sinus rhythm. In rats, AD demonstrated LA structural changes with enhanced sympathetic innervation compared with control. In AD, LA enlargement was associated with prolonged duration of induced AF episodes, impaired LA conduction latency, and increased absolute conduction inhomogeneity. RDN treatment improved LA remodeling and reduced LA diameter compared with sham-operated AD. Furthermore, RDN decreased AF susceptibility and ameliorated LA conduction latency and absolute conduction inhomogeneity, independent of blood pressure reduction and renal function. CONCLUSIONS: In an experimental rat model of CKD, RDN inhibited progression of atrial structural and electrophysiological remodeling. Therefore, RDN represents a potential therapeutic tool to reduce the risk of AF in CKD, independent of changes in renal function and blood pressure.


Asunto(s)
Fibrilación Atrial , Remodelación Atrial , Insuficiencia Renal Crónica , Animales , Fibrilación Atrial/etiología , Fibrilación Atrial/prevención & control , Desnervación , Femenino , Fibrosis , Humanos , Riñón/patología , Masculino , Ratas , Ratas Sprague-Dawley , Insuficiencia Renal Crónica/complicaciones
17.
Biomedicines ; 10(2)2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35203629

RESUMEN

Inflammation and fibrosis play an important pathophysiological role in chronic kidney disease (CKD), with pro-inflammatory mediators and leukocytes promoting organ damage with subsequent fibrosis. Since chemokines are the main regulators of leukocyte chemotaxis and tissue inflammation, we performed systemic chemokine profiling in early CKD in mice. This revealed (C-C motif) ligands 6 and 9 (CCL6 and CCL9) as the most upregulated chemokines, with significantly higher levels of both chemokines in blood (CCL6: 3-4 fold; CCL9: 3-5 fold) as well as kidney as confirmed by Enzyme-linked Immunosorbent Assay (ELISA) in two additional CKD models. Chemokine treatment in a mouse model of early adenine-induced CKD almost completely abolished the CKD-induced infiltration of macrophages and myeloid cells in the kidney without impact on circulating leukocyte numbers. The other way around, especially CCL9-blockade aggravated monocyte and macrophage accumulation in kidney during CKD development, without impact on the ratio of M1-to-M2 macrophages. In parallel, CCL9-blockade raised serum creatinine and urea levels as readouts of kidney dysfunction. It also exacerbated CKD-induced expression of collagen (3.2-fold) and the pro-inflammatory chemokines CCL2 (1.8-fold) and CCL3 (2.1-fold) in kidney. Altogether, this study reveals for the first time that chemokines CCL6 and CCL9 are upregulated early in experimental CKD, with CCL9-blockade during CKD initiation enhancing kidney inflammation and fibrosis.

18.
Cardiovasc Diabetol ; 21(1): 12, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35057807

RESUMEN

BACKGROUND: Guidelines recommend physical activity to reduce cardiovascular (CV) events. The association between physical activity and progression of chronic kidney disease (CKD) with and without diabetes is unknown. We assessed the association of self-reported physical activity with renal and CV outcomes in high-risk patients aged ≥ 55 years over a median follow-up of 56 months in post-hoc analysis of a previously randomized trial program. METHODS: Analyses were done with Cox regression analysis, mixed models for repeated measures, ANOVA and χ2-test. 31,312 patients, among them 19,664 with and 11,648 without diabetes were analyzed. RESULTS: Physical activity was inversely associated with renal outcomes (doubling of creatinine, end-stage kidney disease (ESRD)) and CV outcomes (CV death, myocardial infarction, stroke, heart failure hospitalization). Moderate activity (at least 2 times/week to every day) was associated with lower risk of renal outcomes and lower incidence of new albuminuria (p < 0.0001 for both) compared to lower exercise levels. Similar results were observed for those with and without diabetes without interaction for renal outcomes (p = 0.097-0.27). Physical activity was associated with reduced eGFR decline with a moderate association between activity and diabetes status (p = 0.05). CONCLUSIONS: Moderate physical activity was associated with improved kidney outcomes with a threshold at two sessions per week. The association of physical activity with renal outcomes did not meaningfully differ with or without diabetes but absolute benefit of activity was even greater in people with diabetes. Thus, risks were similar between those with diabetes undertaking high physical activity and those without diabetes but low physical activity. CLINICAL TRIAL REGISTRATION: http://clinicaltrials.gov.uniqueidentifier :NCT00153101.


Asunto(s)
Enfermedades Cardiovasculares/prevención & control , Diabetes Mellitus/terapia , Nefropatías Diabéticas/terapia , Ejercicio Físico , Estilo de Vida Saludable , Fallo Renal Crónico/prevención & control , Insuficiencia Renal Crónica/terapia , Conducta de Reducción del Riesgo , Anciano , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/fisiopatología , Bases de Datos Factuales , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/mortalidad , Diabetes Mellitus/fisiopatología , Nefropatías Diabéticas/diagnóstico , Nefropatías Diabéticas/mortalidad , Nefropatías Diabéticas/fisiopatología , Femenino , Tasa de Filtración Glomerular , Factores de Riesgo de Enfermedad Cardiaca , Humanos , Riñón/fisiopatología , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/mortalidad , Fallo Renal Crónico/fisiopatología , Masculino , Persona de Mediana Edad , Factores Protectores , Ensayos Clínicos Controlados Aleatorios como Asunto , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/mortalidad , Insuficiencia Renal Crónica/fisiopatología , Medición de Riesgo , Factores de Tiempo , Resultado del Tratamiento
20.
Kidney Int ; 101(3): 574-584, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34767831

RESUMEN

Sortilin, an intracellular sorting receptor, has been identified as a cardiovascular risk factor in the general population. Patients with chronic kidney disease (CKD) are highly susceptible to develop cardiovascular complications such as calcification. However, specific CKD-induced posttranslational protein modifications of sortilin and their link to cardiovascular calcification remain unknown. To investigate this, we examined two independent CKD cohorts for carbamylation of circulating sortilin and detected increased carbamylated sortilin lysine residues in the extracellular domain of sortilin with kidney function decline using targeted mass spectrometry. Structure analysis predicted altered ligand binding by carbamylated sortilin, which was verified by binding studies using surface plasmon resonance measurement, showing an increased affinity of interleukin 6 to in vitro carbamylated sortilin. Further, carbamylated sortilin increased vascular calcification in vitro and ex vivo that was accelerated by interleukin 6. Imaging by mass spectrometry of human calcified arteries revealed in situ carbamylated sortilin. In patients with CKD, sortilin carbamylation was associated with coronary artery calcification, independent of age and kidney function. Moreover, patients with carbamylated sortilin displayed significantly faster progression of coronary artery calcification than patients without sortilin carbamylation. Thus, carbamylated sortilin may be a risk factor for cardiovascular calcification and may contribute to elevated cardiovascular complications in patients with CKD.


Asunto(s)
Insuficiencia Renal Crónica , Calcificación Vascular , Proteínas Adaptadoras del Transporte Vesicular , Humanos , Carbamilación de Proteína , Procesamiento Proteico-Postraduccional , Calcificación Vascular/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...